6.4 Work - Quick Summary

Some unit facts

$\mathrm{g}=$ grams, $\mathrm{kg}=$ kilograms,
$\mathrm{cm}=$ centimeter
in = inches, $\mathrm{yd}=$ yards, $\mathrm{mi}=$ miles
$1000 \mathrm{~g}=1 \mathrm{~kg}$
$100 \mathrm{~cm}=1$ meter
12 inches $=1$ foot
3 feet = 1 yard
$5280 \mathrm{ft}=1 \mathrm{mile}$
force $=$ mass \cdot acceleration

	Metric	Standard
Mass	Kg	
Accel.	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	$32 \mathrm{ft} / \mathrm{s}^{2}$
Force	Newtons $=\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$	pounds $=\mathrm{lbs}$
Dist.	$\mathrm{m}=$ meters	$\mathrm{ft}=\mathrm{feet}$
Work	Joules $=\mathrm{J}=\mathrm{N} \cdot \mathrm{m}$	foot-pounds $=\mathrm{ft}-\mathrm{lbs}$

Note: Given kilograms (mass), you must multiply by $9.8 \mathrm{~m} / \mathrm{s}^{2}$ to get
corresponding the force (in Newtons) on Earth.
Pounds (lbs) is already a force, do NOT multiply by acceleration due to gravity.

Basic Work Concept: For a constant force moved a certain distance: Work = Force \cdot Distance If force and/or distance are changing, then we find a pattern for force and distance and compute:

$$
\text { Work }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(F O R C E)(D I S T)=\int_{a}^{b}(F O R C E)(D I S T)
$$

For all problems:

Step 0: Label and draw a picture of the start and end of the task.
Problem type 1: ("Leaky bucket") In these problems, the pattern for force is given or we can find it. The force changes every small moment ($\operatorname{Dist}=\Delta x$) as the object is moved.
FORCE $=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right), \quad$ DISTANCE $=\Delta \mathrm{x}$, WORK $=\int_{a}^{b} f(x) d x$
Leaking at constant rate $\quad \rightarrow f(x)=m x+b$
Or force is given $\quad \rightarrow f(x)=$ force
Step 1: Find the formula for force.
Step 2: Integrate to get work.
Problem type 2: ("Stack of Books" - Chain/pumping) In these problems, we find the weight of a slice at a given height and we find the formula for the distance that slice will move.
FORCE $=$ weight of a horizontal slice $=($ density $)($ width of slice) or (density)(volume of slice)
DIST = distance moved by that slice
For chain: $\quad k=$ density $=$ force per distance
FORCE $=$ weight of slice $=k \Delta x$
DIST = distance moved by slice (typically x if you label like me)
WORK $=\int_{0}^{b} x k d x$
For pumping: $\quad k=$ density $=$ weight per volume
FORCE $=k$ volume $=k$ (hor. slice area) Δy
DIST = distance moved by slice (typically $a-y$ if you label like me)
WORK $=\int_{0}^{b}(a-y) k($ horizontal slice area $) d y$
Step 1: Label a typical horizontal slice. Find the formulas for weight of that slice and the distance that slice will move from start to finish.
Step 2: Integrate to get work.

